- Proyectos
- Biología de Organelas y del Desarrollo
- Biología de Procariotas y Gametas
- Biología de Cannabis
- Fisiología Molecular e Integrativa
- Mecanismos de Señalización en Plantas
- Bioquímica Vegetal
- Biología Comparativa en Solanáceas
- Biología Integrada de Organismos Fotosintéticos
- Fisiología del Estrés en Plantas
Fernández, M. B., Del Castello, F., Nejamkin, A., Foresi, N., Correa-Aragunde, N. (2024). Nitric oxide synthases in cyanobacteria: an overview on their occurrence, structure, and function. En A. K. Mishra, S. S. Singh (Eds.), Cyanobacteria : Metabolisms to Molecules. Academic Press (233-254). Academic Press. https://doi.org/10.1016/B978-0-443-13231-5.00020-9
Nejamkin, A., Del Castello, F., Lamattina, L., Foresi, N., Correa Aragunde, N. (2024). Redox regulation in primary nitrate response: Nitric oxide in the spotlight. Plant Physiology and Biochemistry, 210, 108625. https://doi.org/10.1016/j.plaphy.2024.108625
Foresi, N., De Marco, M. A., Del Castello, F., Ramírez, L., Nejamkin, A., Calo, G., Grimsley, N., Correa-Aragunde, N., Martínez-Noel, G. (2024). The Tiny Giant of the Sea, Ostreococcus’s Unique Adaptations. Plant Physiology and Biochemistry, 108661. https://doi.org/10.1016/j.plaphy.2024.108661
Colman, S. L., Salcedo, M. F., Iglesias, M. J., Álvarez, V. A., Fiol, D. F., Casalongué, C. A., Foresi, N. P. (2024). Chitosan microparticles mitigate nitrogen deficiency in tomato plants. Plant Physiology and Biochemistry, 108728. https://doi.org/10.1016/j.plaphy.2024.108728
Nejamkin A., Del Castello, F., Lamattina, L., Correa-Aragunde, C., Foresi, N. (2023). Nitric Oxide is required for Primary Nitrate Response in Arabidopsis. Evidence for S-nitrosation of NLP7. Antioxidant and Redox Regulation. https://doi.org/10.1089/ars.2022.0210
Latorre, L., Fernández, M. B., Cassia, R. (2023). Nitric oxide is a key part of the UV-B-induced photomorphogenesis in Arabidopsis. Environmental and Experimental Botany, 216, 105538. https://doi.org/10.1016/j.envexpbot.2023.105538
Nejamkin, A., Del Castello, F., Correa-Aragunde, N., Foresi, N., Ramirez, L., Lamattina, L. (2022). Nitric oxide synthases from photosynthetic microorganisms: discovering the tip of the iceberg. En V. P. Singh, S. Singh, D. K. Tripathi, M. C. Romero Puertas, L. M. Sandalio (Eds.), Nitric oxide in plant biology : an Ancient Molecule with Emerging Roles (753-763). Elsevier. https://doi.org/10.1016/B978-0-12-818797-5.00014-5
Fernández M. B., Latorre, L., Lukaszewicz G., Lamattina, L., Cassia, R. (2022) Nitric oxide-mediated regulation of the physiological and molecular responses induced by Ultraviolet- B (UV-B) radiation in plants. En V. P. Singh, S. Singh, D. K. Tripathi, M. C. Romero Puertas, L. M. Sandalio (Eds.), Nitric oxide in plant biology : an Ancient Molecule with Emerging Roles (769-799). Academic Press. https://doi.org/10.1016/B978-0-12-818797-5.00017-0
Foresi, N., Caló, G., Del Castello, F., Nejamkin, A., Salerno, G., Lamattina, L., Martínez-Noël, G., Correa-Aragunde, N. (2022). Arginine as the sole nitrogen source for Ostreococcus tauri growth: Insights on nitric oxide synthase enzyme. Frontiers in Marine Science, 9, 1064077. https://doi.org/10.3389/fmars.2022.1064077
Fernández, M. B., Latorre, L., Correa-Aragunde, N., & Cassia, R. (2022). A putative bifunctional CPD/(6-4) photolyase from the cyanobacteria Synechococcus sp. PCC 7335 is encoded by a UV-B inducible operon: New insights into the evolution of photolyases. Frontiers in Microbiology, 13, 981788. https://doi.org/10.3389/fmicb.2022.981788
Aguilera, A., Distéfano, A., Jauzein, C., Correa-Aragunde, N., Martinez, D., Martin, M. V., Sueldo, D. J. (2022). Do photosynthetic cells communicate with each other during cell death? From Cyanobacteria to vascular plants. Journal of Experimental Botany, 73(22), 7219–7242. https://doi.org/10.1093/jxb/erac363
Correa-Aragunde, N., Foresi, N., Lindermayr, C., Petřivalský, M. (2022). Functions of Nitric Oxide in Photosynthetic Organisms. Frontiers in Plant Science, 13, 877438. https://doi.org/10.3389/fpls.2022.877438
Correa-Aragunde, N., Nejamkin, A., Del Castello, F., Foresi, N., Lamattina, L. (2022). Nitric oxide synthases from photosynthetic organisms improve growth and confer nitrosative stress tolerance in E. coli. Insights on the pterin cofactor. Nitric Oxide, 119, 41-49. https://doi.org/10.1016/j.niox.2021.12.005
Fernández, M. B., Luckaszewicz, G., Lamattina, L., Cassia, R. (2021). Selection and optimization of reference genes for RT-qPCR normalization: A case study in Solanum lycopersicum exposed to UV-B. Plant Physiology and Biochemistry, 160, 269- 280. https://doi.org/10.1016/j.plaphy.2021.01.026
Del Castello, F., Foresi, N., Nejamkin, A., Lindermayr, C., Buegger, F., Lamattina, L., Correa-Aragunde, N. (2021). Cyanobacterial NOS expression improves nitrogen use efficiency, nitrogen-deficiency tolerance and yield in Arabidopsis. Plant Science, 307, 110860. https://doi.org/10.1016/j.plantsci.2021.110860
Mucci, C. A., Ramirez, L., Giffoni, R. S., Lamattina, L. (2021). Cold stress induces specific antioxidant responses in honey bee brood. Apidologie, 52, 596–607. https://doi.org/10.1007/s13592-021-00846-w
Ramirez, L., Luna, F., Mucci, C. A., Lamattina, L. (2021). Fast weight recovery, metabolic rate adjustment and gene-expression regulation define responses of cold-stressed honey bee brood. Journal of Insect Physiology, 128, 104178. https://doi.org/10.1016/j.jinsphys.2020.104178
Fernández, M. B., Lamattina, L., Cassia, R. (2020). Functional analysis of the UVR8 photoreceptor from the monocotyledonous Zea mays. Plant Growth Regulation, 92, 307- 318. https://doi.org/10.1007/s10725-020-00639-8
Del Castello, F. P., Nejamkin, A., Foresi, N., Lamattina, L., Correa-Aragunde, N. (2020). Chimera of Globin/Nitric Oxide Synthase: towards improving nitric oxide homeostasis and nitrogen recycling and availability. Frontiers in Plant Science, 11, 1461. https://doi.org/10.3389/fpls.2020.575651
Nejamkin, A., Foresi, N., Mayta, M. L., Lodeyro, A. F., Castello, F. D., Correa-Aragunde, N., Carrillo, N., Lamattina, L. (2020). Nitrogen depletion blocks growth stimulation driven by the expression of Nitric Oxide Synthase in tobacco. Frontiers in Plant Science, 11, 312. https://doi.org/10.3389/fpls.2020.00312
Cassia, R., Amenta, M., Fernández, M. B., Nocioni, M. Dávila, V. (2019). The role of nitric oxide in the antioxidant defense of plants exposed to UV-B radiation. En M. Hasanuzzaman, V. Fotopoulos, K. Nahar, M. Fujita (Eds.), Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. Wiley. https://doi.org/10.1002/9781119468677.ch22
Del Castello, F., Nejamkin, A., Cassia, R., Correa-Aragunde, N., Fernández, B., Foresi, N., Lombardo, C., Ramirez, L., Lamattina, L. (2019). The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide 85, 17-27. https://doi.org/10.1016/j.niox.2019.01.013
Negri, P., Ramirez, L., Quintana, S., Szawarski, N., Maggi, M., Eguaras, M., Lamattina, L. (2019). Immune-Related Gene expression of Apis mellifera larvae in response to cold stress and abscisic acid (ABA) dietary supplementation. Journal of Apicultural Research, 59(4), 669-676. https://doi.org/10.1080/00218839.2019.1708653