Robuschi, L., Mariani, O., Perk., E. A., Cerrudo, I., Villarreal, F., Laxalt, A. M. (2024). Arabidopsis thaliana phosphoinositide-specific phospholipase C 2 is required for Botrytis cinerea proliferation. Plant Science, 340, 111971. https://doi.org/10.1016/j.plantsci.2023.111971
Perk, E. A., Laxalt, A. M., Cerrudo, I. (2024). CRISPR-Cas9 Protocol for Efficient Gene Knockout and Transgene-free Plant Generation. Bio-protocol, 14(11), 1-15. https://doi.org/10.21769/BioProtoc.5012
Pantaleno, R., Schiel, P., García-Mata, C., Scuffi, D. (2024). Analysis of Guard Cell Readouts Using Arabidopsis thaliana Isolated Epidermal Peels. Bio-protocol, 14(14), e5033. https://doi.org/10.21769/BioProtoc.5033
Pantaleno, R., Scuffi, D., Schiel, P., Schwarzländer, M., Costa, A., García-Mata, C. (2024). Mitochondrial ß-Cyanoalanine Synthase Participates in flg22-Induced Stomatal Immunity. Plant, Cell & Environment, 1-16. https://doi.org/10.1111/pce.15155
Perk, E. A., Arruebarrena Di Palma, A., Colman, S., Mariani, O., Cerrudo, I., D’Ambrosio, J.M., Robuschi, L., Pombo, M. A., Rosli, H. G., Villareal, F., Laxalt, A. M. (2023). CRISPR/Cas9-mediated Phospholipase C 2 knock out tomato plants are more resistant to Botrytis cinerea. Planta, 257(117), 1-6. https://doi.org/10.1007/s00425-023-04147-7
Pantaleno, R., Scuffi, D., Costa, A., Welchen, E., Torregrossa, R., Whiteman, M., García-Mata, C. (2023). Mitochondrial H2S donor AP39 induces stomatal closure by modulating guard cell mitochondrial activity. Plant Physiology, 191(3), 2001–2011. https://doi.org/10.1093/plphys/kiac591
Arruebarrena Di Palma, A., Perk, E. A., Carboni, M. E., García-Mata, C., Budak, H., Tör, M., Laxalt, A. M. (2022). The isothiocyanate sulforaphane induces RBOHD-dependent reactive oxygen species production and regulates expression of stress response genes. Plant Direct, 6(9), 1-11. https://doi.org/10.1002/pld3.437
Di Fino, L., Arruebarrena Di Palma, A., Perk, E. A., García-Mata, C., Schopfer, F.J., Laxalt, A. M. (2021). Nitro-fatty acids: electrophilic signaling molecules in plant physiology. Planta, 254(6), 120. https://doi.org/10.1007/s00425-021-03777-z
Pantaleno, R., Scuffi, D., García-Mata, C. (2020). Hydrogen sulphide as a guard cell network regulator. New Phytologist, 230(2), 451-456. https://doi.org/10.1111/nph.17113
Di Fino, L. M., Cerrudo, I., Salvatore, S. R., Schopfer, F. J., García-Mata, C., Laxalt, A. M. (2020). Exogenous Nitro-Oleic Acid Treatment Inhibits Primary Root Growth by Reducing the Mitosis in the Meristem in Arabidopsis thaliana. Frontiers in Plant Science, 11, 1059. https://doi.org/10.3389/fpls.2020.01059
Arruebarrena Di Palma, A., Di Fino, L. M., Salvatore, S. R., D’Ambrosio, J. M., García-Mata, C, Schopfer F. J., Laxalt, A. M. (2020). Nitro-Oleic Acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach. Journal of Plant Physiology, 246-247, 153128. https://doi.org/10.1016/j.jplph.2020.153128
He, H.; Garcia-Mata, C.; He, L. F. (2019). Interaction between Hydrogen Sulfide and Hormones in Plant Physiological Responses. Plant Growth Regulation, 87, 175–186. https://doi.org/10.1007/s10725-018-0454-9